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To advance cancer research in a transformative way, we must redefine the problem. Although epithelial
cancers, such as breast cancer, may be caused by random somatic gene mutations, the reality is that this is
only one of many ways to induce tumor formation. Cancers also can be produced in experimental systems
in vitro and in vivo, for example, by inducing sustained alterations of extracellular matrix (ECM) structure.
Moreover, certain epithelial cancers can be induced to ‘reboot’ and regenerate normal tissue morphology
when combined with embryonic mesenchyme or exogenous ECM scaffolds that are produced through
epithelial–stromal interactions. At the same time, work in the field of Mechanical Biology has revealed
that many cell behaviors critical for cancer formation (e.g., growth, differentiation, motility, apoptosis) can
be controlled by physical interactions between cells and their ECM adhesions that alter the mechanical
force balance in the ECM, cell and cytoskeleton. Epithelial tumor progression also can be induced in
vitro by changing ECM mechanics or altering cytoskeletal tension generation through manipulation of
the Rho GTPase signaling pathway. Mechanical interactions between capillary cells and ECM that are
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ilarly mediate control of capillary cell growth and angiogenesis, which
rogression and metastasis. These findings question basic assumptions in
ntriguing possibility that cancer may be a reversible disease that results
of tissue architecture, which leads to physical changes in cells and altered
pective raises the possibility of developing a tissue engineering approach
logically inspired materials that mimic the embryonic microenvironment
vert into normal tissues.
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1. Introduction

Cancers are commonly thought to result from progressive accu-
mulation of random gene mutations, and most research in this area
has therefore sought to identify critical oncogenic genes or proteins.
This paradigm led the pharmaceutical industry to focus on develop-
ment of drugs that target single molecular components encoded or
regulated by these genes. It is now clear, however, that cell behav-
iors are not regulated by a linear series of commands, but rather by
networks of molecular interactions that involve positive and neg-
ative reinforcement, as well as high levels of cross talk integrated
at the whole system (genome-wide gene and protein regulatory
network) level [1–4].

In this type of dynamic regulatory network, switching between
different stable states or phenotypes requires that activities of sig-
naling molecules in multiple pathways change in concert [1,3,5,6].
For example, different mitogens commonly activate over 60 genes
in common [7], and master switch genes (e.g., myoD, Snail) simi-
larly control the implementation of complex behavioral programs
required for cell fate switching by regulating the concerted expres-
sion of scores of downstream genes [8,9]. Adult skin fibroblasts also
can be induced to revert to pluripotent embryonic stem cells by
simultaneously co-expressing a handful of different transcription
factors that, in turn, activate multiple downstream genes [10–13].

If multiple signaling elements in the cellular regulatory network
must be altered simultaneously to change cell phenotype, then var-
ious types of environmental stimuli that produce pleiotropic effects
in cells (and hence are not commonly thought of as ‘specific’ bioreg-
ulators) may contribute to normal and malignant tissue develop-
ment. This may explain why switching between different cell fates
that are critical for cancer (e.g., growth, differentiation, apoptosis,
motility) can be triggered in normal and transformed cells, as well
as stem cells, by changes in extracellular matrix (ECM) structure
and cell shape distortion [14–20], ‘non-specific’ chemical solvents
[6] and electrical ion flows [21–24] that influence multiple gene
activities, as well as by distinct molecular factors or specific gene
mutations in epithelial or mesenchymal cells. It also could explain
why although a combination of four genes was recently found to
be sufficient to induce fibroblasts to revert to embryonic stem cells
in two different experimental reports, the four genes utilized were
different in each study (only two genes were shared in common)
[10,11,25]. Perhaps it is for this reason that conventional strategies
for the development of anti-cancer therapeutics have been subop-
timal, and why many active ‘single target’ drugs (e.g., Glivec) are
Please cite this article in press as: Ingber DE, Can cancer be reversed by en
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later discovered to influence multiple signaling pathways simulta-
neously [26]. Thus, a key obstacle for future progress in the cancer
therapeutics field is to develop experimental, theoretical and ther-
apeutic strategies that take into account the structural complexity
and system-level nature of cellular regulation [5,27–29].

Another major problem restricting forward advance is that can-
cer is often defined as a disease of cell proliferation. But deregulated
growth is not sufficient to make a tissue cancerous; a wart is a
simple example. What makes a growing cancer malignant is its
ability to break down tissue architecture, invade through disrupted
tissue boundaries, and metastasize to distant organ sites. In sim-
plest terms, cancer is a disease of development: it results from
loss of the normal controls that direct cells to assemble into tis-
sues, and that hold tissues within their organ confines [30–35].
This is consistent with the increasing appreciation of the impor-
tance of cancer stem cells [36], epithelial–mesenchymal transitions
[37], and angiogenesis [38] for tumor formation and metastatic pro-
gression. In addition, provocative experiments first carried out over
35 years ago show that certain cancers differentiate and normal-
ize their growth when combined with normal mesenchyme, other
embryonic tissues, or with ECMs that are deposited as a result of
 PRESS
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interactions between these tissues [30,39–48]. Some human malig-
nant carcinomas also induce host stroma to be tumorigenic in nude
mice [49]. Thus, cancer is a developmental disease that involves
dysfunction of multi-cellular inductive interactions; it does not
result from unregulated growth of a single cell type.

Interest in work pursuing developmental contributions and
non-genetic causes of cancer waned when the molecular biol-
ogy revolution surged and the focus shifted almost entirely to
genetic causation. But there is now renewed interest in develop-
mental and environmental contributions to cancer growth because
of more recent studies that confirm the central role that the tis-
sue microenvironment plays during tumor formation [35,50–52].
These experiments show, for example, that carcinogens must act
on the connective tissue stroma as well as the epithelium to pro-
duce a cancer [53]; mechanical interactions between cancer cells
and ECM can accelerate neoplastic transformation [18,54]; normal
tissues can be induced to become cancerous in vivo by altering
ECM structure [55]; and stroma from healthy adult animals can
prevent neoplastic transformation and encourage normal growth
of grafted epithelial cancer cells [48]. The recent clinical approval
and use of angiogenesis inhibitors that target the vasculature in
the stromal compartment of the tumor, and not the cancer cells
themselves, provide additional evidence supporting the poten-
tial value of this unconventional view of cancer formation and
progression.

Thus, the challenge is to retrace our steps, and to re-explore this
old path of investigation in cancer research that was left by the way-
side years ago. Specifically, these observations raise the possibility
that the production of cancer stem cells, epithelial–mesenchymal
transitions, increased angiogenesis and unrestrained cell growth
that drive cancer formation may result from deregulation of the tis-
sue microenvironment. Conversely, embryonic tissues may reverse
cancerous growth by restoring these normal microenvironmen-
tal cues. In this article, we explore these possibilities in greater
detail, and briefly discuss the central role that the Rho family of
small GTPases plays in this micromechanical control system. The
possibility of developing a tissue engineering approach to cancer
therapy that involves creation of biomimetic materials that mimic
the inductive, cancer-reversing properties of embryonic tissues, is
also discussed.

2. Structural determinants of cancer formation

Epigenetic (non-genetic) factors play an important role in cancer
gineering the tumor microenvironment?, Seminars in Cancer Biology

formation. Although the term ‘epigenetic’ has come to be used in a
very narrow way (i.e., to refer to stable chromatin modifications),
the reality is that there are many other non-genetic contributors
to cancer development. For example, while constitutive expres-
sion of an oncogene in the beta cells of pancreatic islets stimulates
growth and produces pancreatic tumor formation in transgenic
mice, these tumors remain in a benign hyperplastic state and do
not progress to form cancerous lesions unless angiogenesis (new
capillary blood vessel growth) is also stimulated in the neighbor-
ing stroma [56]. The deregulation of cell growth and loss of cell–cell
relations that characterize early stages of pancreatic carcinoma for-
mation also correlate with compromise of the structural integrity of
the epithelial ECM (basement membrane) [30,57]. Moreover, these
disorganized tumor cells suppress their growth and reform into a
polarized epithelium when they come in direct contact with con-
nective tissue stroma that induces them to accumulate an intact
basement membrane in vivo, or when they are cultured on exoge-
nous, intact basement membrane in vitro [30,43,44,57]. In addition,
recent studies with mammary epithelial tumor cells show that
transformation of these cells can be enhanced based on physical
interactions with the ECM that increase cell contractility [18], and

dx.doi.org/10.1016/j.semcancer.2008.03.016
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that their growth and differentiation can be normalized by modu-
lating cell adhesion to the ECM [58].

Changes in ECM structure also appear to play a central role
in cancer formation in vivo. For example, normal breast epithe-
lium can be induced to progress through hyperplasia and to
transform into cancerous tissue by constitutively overexpressing
the ECM-degrading enzyme, stromelysin, in transgenic mice [55].
Importantly, these cells that were transformed as a result of changes
of tissue structure also exhibit genomic abnormalities [55,59,60].
This concept that structural or mechanical changes in the tissue
microenvironment may actively contribute to tumor formation is
supported by early experiments in the cancer research field, which
showed that implanting a rigid piece of metal or plastic can trigger
Please cite this article in press as: Ingber DE, Can cancer be reversed by en
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cancer formation in animals, whereas tumors do not form when
the same material is introduced as a powder [61] Thus, changes
in ECM and tissue structure appear to have the potential to be as
carcinogenic as oncogenic chemicals, viruses, radiation and gene
mutations.

3. Cancer as a disease of tissue development

Cancer is a developmental disease because it results from a
breakdown of the fundamental rules that govern how cells stably
organize within tissues, tissues within organs, and organs within
the whole living organism. Uncontrolled cell growth is necessary
for cancer formation, but it is not sufficient. It is only when growth
becomes autonomous and leads to disorganization of normal tissue
architecture that a pathologist can recognize that a normal tissue
has undergone ‘neoplastic transformation’. In the case of epithe-
lial tumors that make up over 90% of cancers, the tumor (tissue
mass or swelling) is deemed malignant if there is a breakdown of
boundaries between the epithelial and connective tissues that com-
prise the organ. Disruption of these tissue boundaries enables these
cells to invade into nearby blood vessels or lymphatics, and thereby

Fig. 1. Cancer as an engineering problem. A theoretical model for mechanical control of tis
During normal development, regional increases in ECM turnover result in formation of loc
contraction and pulling of neighboring epithelium (white arrows) and underlying mesen
distort or experience increased stresses and thus, become preferentially sensitive to growt
and thus, cell mass expansion and ECM extension are tightly coupled; this leads to bud f
during embryonic lung formation, and corresponding engineering depictions of the loc
formation in an adult epithelium, basement membrane thinning, changes in cell mecha
observed, much like during epithelial bud formation (left). But because cell division is no
disorganization of normal tissue architecture result. If these changes in tissue structure a
lead to selection of anchorage-independent cells, and development of a malignant carcin
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spread or ‘metastasize’ to distant organs resulting in multi-organ
failure and death. It is therefore helpful to view cancer progression
in the context of embryological development gone awry.

Because most cancer research is carried out using experimental
tumor models, the fact that cancer results from dysregulation of
a normal tissue and progressive loss of tissue architecture is often
ignored. This is important because although tissue patterns are ini-
tially established in the embryo, all tissues are dynamic structures
that undergo continual turnover. Thus, living organs must maintain
functional signaling mechanisms that are necessary to ensure that
the normal three-dimensional (3D) form of their tissues remain
relatively constant throughout adult life.

The shapes of normal epithelial tissues arise in the embryo as a
gineering the tumor microenvironment?, Seminars in Cancer Biology

result of complex epithelial–mesenchymal interactions; however,
the 3D pattern of many epithelial tissues is actually dictated by the
underlying mesenchyme. For example, in studies in which epithelia
isolated from mammary gland were recombined with mesenchyme
from salivary gland, the final organ displayed the morphology of
the salivary gland (i.e., the source of the mesenchyme); however,
the cells secreted milk proteins into the duct instead of salivary
enzymes [62]. Interestingly, mesenchyme from different tissues
also differ in their ability to exert traction forces on their adhesions
[63]. Thus, the mesenchyme apparently possesses all of the chem-
ical and mechanical information necessary to guide 3D tissue and
organ formation in a characteristic tissue pattern-specific manner.

Analysis of the mechanism of epithelial organ development
has revealed that the mesenchyme sculpts epithelial tissue form
by accelerating and slowing ECM (basement membrane) turnover
at selective sites [34,64,65] (Fig. 1). The mesenchyme produces
high ECM-degrading activity (e.g., metalloproteinases) in selected
regions, and the overlying epithelium responds by increasing ECM
deposition to even greater levels so that net lateral extension and
outward folding of the epithelial sheet-like basement membrane
result at these sites. Epithelial cell proliferation also rises in these

sue remodeling during normal epithelial development and tumor formation. (Left)
al defects in the basement membrane (green), which stretches and thins due to the
chyme (gray arrow). Cells adherent to this region of the basement membrane will
h stimuli. Cell division is paralleled by deposition of new basement membrane (red)
ormation in this localized region. Micrographs of normal epithelial bud formation
al mechanical strain distributions are shown at the far left. (Right) During tumor
nics, and an increase in the sensitivity of adjacent cells to growth stimuli are also
t accompanied by basement membrane extension, piling up of epithelial cells and
nd mechanics are sustained over time, then this continued growth stimulus could
oma.
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 IN
ncer B
ARTICLEG Model
YSCBI-779; No. of Pages 9

4 D.E. Ingber / Seminars in Ca

same regions that exhibit the highest ECM turnover [66–68], and
thus every time the ECM area doubles in size it is precisely matched
by cell division such that the thickness of the epithelium remains
relatively stable during this dynamic remodeling process.

At the same time cell proliferation and basement membrane
growth are accelerating at the tips of growing epithelial buds, the
mesenchyme deposits fibrillar collagen that slows basement mem-
brane degradation in the intervening regions (Fig. 1) [69]. In this
manner, epithelial organs (e.g., glands, skin) are created that exhibit
regular patterns containing multiple growing epithelial buds or
branches separated by quiescent cleft regions. However, this is a
delicate dynamic balance: if ECM degradation outpaces ECM syn-
thesis, then basement membrane dissolution results, and this leads
to involution of the entire developing tissue [70–72]. Cells within
growth epithelium and endothelium regress because they lose their
normal ECM anchoring points when basement membrane integrity
is lost, and this causes the cells to detach, round and switch on the
cell death (apoptosis) program [16,73].

Epithelial–mesenchymal interactions are generally discussed in
the context of embryogenesis, and some assume that they end at
birth. However, all adult tissues undergo turnover as their con-
stituent cells and molecules are continually removed and replaced.
Thus, in reality, it is the 3D architecture or pattern integrity of
the tissue that is maintained over time, and not individual cellu-
lar or molecular subcomponents (e.g., normal intestinal epithelium
‘turns over’ every 3 days). Importantly, adult epithelium retains the
ability to undergo normal morphogenesis when mixed with embry-
onic mesenchyme from different regions [42,45,74], and the source
of the stromal tissue governs the final 3D form that epithelia will
exhibit [75]. Moreover, studies of the growth of normal epithelium
[67,76] and endothelium [77] show that local dissolution of base-
ment membrane occurs before the onset of cell proliferation. Thus,
ECM remodeling appears to drive growth differentials, and not the
other way around.

These findings are relevant for cancer because tumor archi-
tecture also varies depending on the source of connective tissue
[78], and chemical carcinogenesis of epidermis requires the pres-
ence of closely apposed carcinogen-treated dermis [79]. Moreover,
different types of epithelial tumors produce distinct effects on pro-
duction of stromal collagen by host fibroblasts [80], and grafted
human epithelial tumors can recruit normal murine stromal cells to
become tumorigenic in nude mice [49]. But perhaps the most inter-
esting observation is that various epithelial cancers can be induced
to ‘differentiate’ and regenerate normal epithelial organization and
Please cite this article in press as: Ingber DE, Can cancer be reversed by en
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histodifferentiation by being mixed with normal embryonic mes-
enchyme [30,39–48].

Localized differentials of cell growth and ECM turnover simi-
lar to those observed during epithelial–mesenchymal interactions
in the embryo occur in tissues that retain their ability to undergo
morphogenesis in the adult (e.g., breast epithelium during preg-
nancy, growing blood capillaries during wound healing and tumor
angiogenesis). Interestingly, although stable adult epithelial tis-
sues do not normally exhibit major changes in ECM structure or
undergo active changes in form, ultrastructural changes in the base-
ment membrane do occur during early phases of cancer formation,
prior to development of a palpable tumor [81–83]. These struc-
tural alterations include the appearance of basement membrane
gaps, thickening and reduplication, as well as loosening of basal
cells from one another and from neighboring connective tissue [81].
Experimental treatment of thyroid gland with carcinogens similarly
causes the epithelial basement membrane to become discontinu-
ous (as seen in the tips of growing epithelial buds in the embryo),
and then to completely dissolve in certain regions as the lesions
progress from pre-nodular to nodular forms, and finally to overt
invasive carcinomas [82].
 PRESS
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Formation of breaks in the epithelial tumor basement mem-
brane is a hallmark of malignant invasion because cells in
non-malignant tumors surrounded by an intact basement mem-
brane generally do not penetrate into surrounding tissues [84–86].
But ECM remodeling during tumor progression is likely more
dynamic than is generally appreciated, and microenvironmental
cues may govern whether basement membrane degradation or syn-
thesis is induced locally. For example, different tumor lesions in a
spontaneously metastatic murine mammary cancer vary greatly in
terms of the number and size of basement membrane discontinu-
ities they exhibit [87]. Most interesting is the observation that well
developed, continuous basement membranes sometimes appear
surrounding metastatic tumors at distant sites, even though the pri-
mary tumors have detectable breaks in their basement membranes
that permit these lesions to form [81]. Taken together, these find-
ings strongly suggest that the most common forms of cancer (i.e.,
carcinomas) may result from aberrant epithelial–mesenchymal
interactions. This also may explain why tumors behave so differ-
ently in different stromal microenvironments.

4. A microstructural view of cancer formation

The early observations described above led to the proposal over
25 years ago that local changes in the physical properties of the
ECM in the tissue microenvironment might potentially lead to can-
cer formation [30–32,34,44,57]. This engineering view of cancer
formation was based on the idea that tumors may result from
progressive deregulation of normal epithelial–mesenchymal inter-
actions that are required to maintain stable tissue form throughout
adult life (Fig. 1). For example, although the spatial coupling
between changes in ECM structure (e.g., basement membrane thin-
ning) and increased cell proliferation is similar in premalignant
epithelial lesions and embryonic tissues, there is a difference. In
the embryo, the basement membrane grows rapidly (over hours to
days) and expands laterally through folding because the net amount
of ECM synthesis is greater than ECM degradation. In contrast, there
is neither significant lateral expansion nor rapid dissolution of the
basement membrane in adult tissues, and thus, the increased ECM
breakdown observed in these adult tissues is not overcome (or even
fully matched) by new basement membrane synthesis. If there is
increased cell division in these regions of enhanced ECM remod-
eling without a commensurate expansion of basement membrane
area, then these cells will pile on top of each other (Fig. 1).

When this ‘hyperplastic’ tissue mass enlarges enough to become
gineering the tumor microenvironment?, Seminars in Cancer Biology

palpable, it is recognized as a ‘tumor’. However, if the growth stim-
ulus (e.g., ECM thinning) ceases, then the overlying cells will die
because they lose adhesion to the underlying basement membrane
that they require to survive, and hence hyperplasia is a reversible
process. But hyperplasia represents only one point along a spec-
trum of tissue deregulation. If the growth stimulation is sustained
long enough and cells do not terminally differentiate or undergo
rapid apoptosis, it may lead to spontaneous mutations or selec-
tion of subpopulations of cells that can survive and proliferate
autonomously of anchorage to basement membrane, much like
when cells ‘spontaneously transform’ through continued culturing
(and cell doublings) in vitro. These tumors will survive and continue
to grow, even when the initiating stimulus is removed. Because
these abnormal cells also become physically separated from the
underlying stromal cells, they may progressively lose their abil-
ity to maintain basement membrane integrity over time (i.e., given
that continued epithelial–mesenchymal interactions is required for
basement membrane production in the embryo). Now when com-
plete dissolution of the basement membrane occurs, the tissue does
not undergo involution because the epithelial tumor cells survive
in the absence of ECM adhesions. Instead, these cells are now free to

dx.doi.org/10.1016/j.semcancer.2008.03.016
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invade into the neighboring stroma, blood vessels and lymphatics,
and thus, to metastasize to other organs where they can implant
and grow. This is a malignant cancer.

What is perhaps most novel about this microstructural model
of cancer formation, however, is the idea that normal and malig-
nant tissue differentiation are controlled mechanically [30–32,34].
This hypothesis was based on the observation that all adherent
cells generate tensional forces in their contractile cytoskeleton, and
exert traction on their adhesions to ECM and to other cells. Thus,
when tissues appear stable in form, they are, in reality, in a state
of isometric tension in which cell-generated stresses are balanced
by other forces and structures in neighboring cells and their linked
ECM scaffolds; these types of tensionally prestressed structures are
called ‘tensegrity’ structures [28].

If living tissues are stabilized in this manner, then a local thin-
ning of the basement membrane will cause it to stretch out more
than its thicker (and stiffer) surrounding regions, much like a run in
a woman’s stocking (Fig. 1). This local change in ECM structure will
Please cite this article in press as: Ingber DE, Can cancer be reversed by en
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increase the mechanical stresses exerted locally on the cells that are
adherent to the thinned portion of the basement membrane. Tensed
or stretched cells exhibit increased sensitivity to soluble mitogens
[15,16,88]; thus, this mechanical distortion could be responsible
for the local changes in cell growth that drive embryonic morpho-
genesis, as well as tumor formation (Fig. 1) [30,32,34]. In fact, in
vitro studies confirm that cell growth rates increase within regions
of endothelial monolayers preferentially at sites where mechani-
cal stresses concentrate [89], and that tissue geometry feeds back
to determine sites of mammary epithelial branching morphogen-
esis [90]. Local traction forces exerted by epithelial tumor cells on
their ECM adhesions also appear to control basement membrane
turnover during cancer invasion [91]. Thus, local mechanical inter-
actions between cells and their ECM may actively contribute to the
carcinogenic process.

5. Mechanochemical control of cell fate switching by ECM

Studies carried out in the field of Mechanical Biology over
the past 20 years have confirmed that cells can be switched
between phenotypes critical for neoplastic transformation, includ-

Fig. 2. Mechanical control of cell growth and function. (Left) Diagrammatic side-view and
on the micrometer scale that constrain cell spreading are shown at the top. Phase contrast
substrates are displayed at the bottom. The effects of cell spreading (distortion) can be di
adhesion-sized islands (5 �m) ECM islands that cause the cells to spread from island to isla
amount of ECM as on the small island. (Right) Diagram depicting general effects of cell sp
cells, when manipulated using the micropatterned substrates shown at left (see Refs. 15–
apoptosis is switched on in round cells, and cells preferentially undergo differentiation in
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ing growth, differentiation, motility and apoptosis in the presence
of soluble mitogens by mechanically distorting cells and alter-
ing cytoskeletal structure. For example, epithelial and endothelial
cells generally proliferate on ECM substrates that resist cell trac-
tion forces generated in the actin cytoskeleton and promote cell
distortion (spreading) (Fig. 2) [15,16,88]. In contrast, these cells
round and undergo apoptosis on ECM substrates that fail to bear
these loads, whereas they differentiate and express tissue-specific
functions when cultured on substrates that maintain an inter-
mediate degree of shape distortion [15,16,92]. Directional cell
motility also can be controlled by altering physical interactions
between cells and their ECM adhesions [17,93,94]. In addition, sub-
strates that mimic the flexibility of the ECM of a particular tissue
type best support the expression of the differentiated phenotype
normally exhibited cells from that tissue [95,96]. Even human
mesenchymal stem cell lineage switching can be controlled by
modulating mechanical interactions between cells and their ECM
adhesions, which alter cell shape and cytoskeletal organization
gineering the tumor microenvironment?, Seminars in Cancer Biology

[19,20].
A hallmark of malignant transformation is loss of “anchorage-

dependent growth”, which enables cells to survive and continue
proliferating when they pile up and lose adhesion to their under-
lying ECM. Past studies have shown that anchorage-dependence
is largely due to ‘cell shape-dependence’: these cells must both
bind ECM and physically distort their cytoskeleton in order to
proliferate and prevent apoptosis (Fig. 2) [16,97]. Furthermore, as
normal cells become progressively more transformed, they exhibit
a concomitant decrease in their sensitivity to growth inhibition
by cell rounding, which manifests itself as a progressive increase
in cell packing densities [98]. Continuous mechanical perturba-
tion also can induce tumors in rodents [61], and there are many
anecdotal accounts of cancer forming at sites of repeated physical
injury.

The ability of changes in the mechanical microenvironment
to promote tumor formation may, in part, be explained by the
recent demonstration that increases of ECM stiffness can establish
a mechanical autocrine loop (positive feedback loop). The small
GTPase Rho is activated by tension application to cell surface inte-
grin receptors that mediate ECM adhesion, and it is suppressed by

top-view representations of cells adherent to microfabricated circular ECM islands
microscopic images of capillary endothelial cells cultured on these micropatterned
stinguished from those due to ECM contact formation by using many smaller, focal
nd; these cells spread as much as cells on the large island, but contact the same total
reading on the growth, differentiation and apoptosis of epithelial and endothelial

17, for details). Note that, in general, cell growth increases with spreading, whereas
a moderately spread state.

dx.doi.org/10.1016/j.semcancer.2008.03.016
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tension dissipation in the cytoskeleton [99]. The malignant pheno-
type in mammary epithelial cells can be switched on by increases
in ECM rigidity that enhance cell contractility through activation
of RhoA, which feeds back to further increase ECM stiffness (as
well as cell spreading and growth) when cells pull on their ECM
adhesions and promote ECM fibril alignment [18]. Interestingly,
RhoA signaling also mediates shape-dependent growth control in
normal capillary endothelial cells during angiogenesis [100]. Fur-
thermore, recent work suggests that tumor endothelial cells differ
from their counterparts in that their Rho signaling is hyperacti-
vated (Ghosh et al., unpublished observation), much as is observed
in tumor epithelial cells [18]. Rho signaling also contributes to the
epithelial–mesenchymal transition in tumor cells as colon carci-
noma cells exhibit a large increase in expression of the related
isoform RhoC, as well as concomitant suppression of RhoA activ-
ity, when they undergo this transition [101]. Thus, the Rho family
of small GTPases apparently represents a critical control element in
normal tissue development, which can contribute to tumor forma-
tion when constitutively activated or aberrantly regulated in the
appropriate tissue microenvironment.

6. Integration of structural and information processing
networks

How can mechanical distortion of the cell influence its growth
and function? Mechanical strain of the ECM that alters forces trans-
mitted across cell surface integrin receptors can activate various
intracellular signaling pathways (e.g., ERK, MAP, Ca++, src, G pro-
teins, etc.) that are also triggered by soluble cytokines when their
bind their surface receptors [28,102,103]. But cell fate switching
cannot be explained in terms of changes in a single signaling
pathway. For example, the angiogenic factor FGF actively signals
through its receptors in endothelial cells regardless of their shape,
yet spread cells respond by surviving and proliferating, whereas
round cells switch on apoptosis and die [16,34]. Moreover, applica-
tion of mechanical stress to cell surface integrins produces similar
transmembrane signals in round and spread cells [104], yet the phe-
notypic switch is again governed by the degree to which the cell
spreads. Thus, the overall degree of cell shape (and cytoskeletal)
distortion governs how cells will respond at the level of the whole
cell, and the entire genome-wide regulatory network.

Mechanical changes in cytoskeletal structure due to alterations
of physical cues (e.g., ECM mechanics, tissue distortion) may simul-
taneously alter multiple signaling pathways throughout the cell
Please cite this article in press as: Ingber DE, Can cancer be reversed by en
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because numerous signal transduction molecules and gene regu-
latory proteins normally function when immobilized on insoluble
scaffolds that form the physically linked cytoskeleton–nuclear
matrix lattice that bears mechanical loads inside the cell [5,105].
Mechanical stresses can influence the biochemical activities of
these molecules by producing load-dependent changes in molecu-
lar shape that can alter binding kinetics and enzyme reaction rates
[28,106,107].

This multiplexed signaling response is important because recent
work suggests that cell fate switching requires multiple gene
activities to change simultaneously [1–6,29,108]. This is, in part,
based on mathematical models of dynamic networks from the
field of complexity that exhibit regulatory circuits with stimulatory
and inhibitory interactions between elements analogous to those
observed in biological regulatory networks [1,3,29]. This physics-
based approach to cell regulation suggests that multiple changes
must occur at the same time within the genome-wide gene reg-
ulatory network to switch the entire network from one stable
‘attractor’ state or phenotype to another. Thus, cell and nuclear
structure appear to have evolved to produce concerted transitions
between distinct cell (and tissue) phenotypes by triggering these
 PRESS
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phenotypic switches through multiplexed signal transduction [5].
These switches may include transitions between quiescence and
growth, stationary and motile states, and between different stable
cell shapes (e.g., during epithelial–mesenchymal transition) that
are central to tumor progression. The existence of self-reinforcing
attractor states of this type based on complex dynamic signaling
networks may explain the robustness of epithelial–mesenchymal
transitions that appear to be nearly identical in various types of can-
cers, regardless of species and organ source. Similar self-propelling
processes and self-stabilizing states likely contribute to tumor pro-
gression and metastatic conversion as well [29].

7. Can we devise new therapies that ‘reboot’ cancers to
revert to normal tissues?

The studies and concepts reviewed above bring many of the
existing assumptions in the Cancer Biology field into question.
All scientific fields face conflicting hypotheses and mechanistic
explanations during their formative stages, but then one or two
theories win out and dominate thereafter. Often the losing theo-
ries are incorrect or significantly flawed; however, sometimes they
are valid, but the tools do not yet exist to test them properly. The
importance of the physicality of the tumor microenvironment for
cancer formation is one of these theories that has awaited devel-
opment of appropriate methods to experimentally determine its
value.

It is widely accepted that cancer is an irreversible and deadly
disease that results from accumulated gene mutations and chromo-
somal abnormalities. If cancers are caused by irreversible genetic
alterations, then successful treatment will require that these cells
must be killed or surgically removed to prevent loss of life; this per-
spective also validates the use of toxic therapies that often cause
high morbidity in patients that are already horribly compromised
by their disease.

But if cancer is a reversible process, then the entire anti-cancer
paradigm will change. This is a highly provocative idea and can-
cer will remain a tough problem to solve; however, as described
above, there are many studies in experimental systems to suggest
that cancers can be induced to become quiescent, differentiate,
die or form completely normal tissues, if provided with the cor-
rect set of complex signals, as conveyed by embryonic tissues or
other microenvironmental cues (Fig. 3) [30,39–48]. Thus, the poten-
tial for cancer reversibility exists; however, rigorous experimental
characterization of how this process proceeds is necessary before
gineering the tumor microenvironment?, Seminars in Cancer Biology

the existing research establishment will (or should) take notice and
change its direction.

For those cancer researchers who know of the ability of embry-
onic tissues to induce cancer reversion, most assume that it is due
to production of some critical molecular morphogen or change in
gene activity. However, the finding that cancer formation can be
promoted or accelerated by altering the mechanics or structure of
the ECM [18,30,54,55], or by chemically altering the connective tis-
sue stroma [53], suggests that physical cues conveyed by stroma
(mesenchyme) may be equally important. Similarly, few investiga-
tors are aware of the critical role that electrical potentials play in
normal tissue and organ regeneration, that membrane potentials
are altered in tumor cells, and that certain cancers can be induced
to stop growing and differentiate by normalizing their bioelectrical
properties [21–24,109,110]. Thus, demonstration that embryonic
tissues harness these physical signals (in addition to chemical cues)
could open entirely new avenues for therapeutic intervention in
cancer.

There are currently three modalities of cancer therapy: molecu-
lar inhibitors (drugs), radiation and surgery. Nanobiotechnologies
have recently gained interest as alternative multifunctional agents

dx.doi.org/10.1016/j.semcancer.2008.03.016
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Fig. 3. An engineering solution to cancer? (Left) Diagrams showing how combinin
their phenotype and restore normal tissue morphology. (Right) Analogous diagra
biomimetic materials, which mimic the inductive behavior of embryonic mesenchy

that may incorporate standard drug therapies, as well as target-
ing and imaging functions. However, there is another possibility:
if physical factors contribute to cancer formation, then biomateri-
als and scaffolds used for medical devices and tissue engineering
applications could provide yet another modality for cancer therapy
(Fig. 3). These materials would need to be biomimetic in that they
must mimic the structural, adhesive, molecular, chemical, mechan-
ical, and electrical cues that embryonic tissues convey when they
induce cancer reversal.

In fact, engineers and cancer biologists are beginning to work
together, and are finding that synthetic ECM scaffolds can induce
cultured tumor cells to better mimic their in vivo phenotype
[111]. Biologists interested in control of normal stem cell lineage
switching also have reached out to tissue engineers because they
now recognize the importance of regenerating a ‘stem cell niche’
with correct physical and chemical properties, and that providing
Please cite this article in press as: Ingber DE, Can cancer be reversed by en
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cytokines alone is not sufficient [112,113]. Given the central role
of cancer stem cells in driving cancer progression, it is possible
that progressive deregulation of normal tissue architecture also
may contribute to development of these aberrant stem cells by dis-
rupting the structural determinants of the natural stem cell niche.
Thus, the idea of using tissue engineering approaches to restore the
normal niche and thereby, reverse cancer development is exciting.
Similarly, if it were possible to engineer biomimetic materials or
scaffolds that mimic the embryonic mesenchyme’s ability to revert
carcinomas into normal epithelium, then these materials could
be applied at tumor resection sites to prevent cancer recurrence.
One also might envision injectable biomimetic materials that can
target to primary and metastatic tumor sites, where they would
integrate into the local stroma and self-assemble into similar bioin-
spired scaffolds that act like mesenchyme to induce cancer reversal.
These concepts have not yet been explored experimentally; how-
ever, I hope that this article stimulates young investigators who
currently work in ostensibly unrelated fields (e.g., tissue engi-
neering, materials science, physics) to join the battle on cancer,
so that we can transform the way this disease is treated in the
future.
elial tumor cells with embryonic mesenchyme induces the cancer cells to reverse
scribing a potential future form of cancer reversal therapy that utilizes synthetic
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